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Abstract— In This paper we use Adomian decomposition method to solve the initial value problems for systems of the differential-
algebraic equations that can be transformed to system of differential equations. The Adomian decomposition method (ADM) is a powerful 
method which considers the approximate solution of a non-linear equation as an infinite series which usually converges to the exact 
solution. This method is proposed to solve some first-order differential-algebraic  equations. It is shown that the series solutions converge 
to the exact solution for each problem. It is observed that the method is particularly suited for initial value problems for systems of non-
linear differential-algebraic equations. 
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1 INTRODUCTION                                                                     
he system of differential-algebraic equations indicates a 
system that consists of ordinary differential equations 
coupled with purely algebraic equations; in other words, 

differential-algebraic equations are everywhere singular im-
plicit ordinary differential equations. In other define differen-
tial-algebraic equations are systems of differential equations 
where the unknown functions satisfy additional algebraic 
equations [Griepentrog  E. and et al., 1992] [Wenhai C. and 
Zhengyi L.2004]presented An Algorithm for Adomian De-
composition Method, Applied Mathematics and Computation. 
[S. K. and A. A. 2011] solve differential algebraic equations 
using a multiquadric approximation scheme.[ M. N. and 
et.al.2006] they is applied Adomian Decomposition Method 
(ADM) to typical oscillation equations (Duffing and Van der 
Pol equations).  [ G. N. and et.al. 2016] observed that the 
method of (ADM) is particularly suited for initial value prob-
lems with oscillatory and exponential solutions. 

 
Consider the system of differential-algebraic equations that 

consist of the first order non-linear ordinary differential equa-

tions: ( ) ( , ( ), ( ))y t f t y t x t′ =    (1.1a) 
together with the nonlinear algebraic equation 

( , ( ), ( )) 0g t y t x t =      (1.2b) 
If we differentiate the algebraic constraint (1.1) with respect to 

t, one can get: 

( , ( ), ( )) ( ) ( , ( ), ( )) ( ) ( , ( ), ( ))y x tg t y t x t y t g t y t x t x t g t y t x t′ ′+ = −

if xg is nonsingular, the system given by eq.(1.3) has index 
one. The number of differentiation steps required in this pro-
cedure is the index [Brenan K. and et al. 1989]. 

2.The Adomian decomposition method [Wnhai C. and 
Zhengyi L., 2004]: 

The Adomian decomposition method has been applied to 
solve problems in physics, biology and chemical reactions. 
Recently, there has been a great deal of interest in applying 
Adomian’s decomposition technique for solving a wide class 
of nonlinear equations, including algebraic, differential, par-
tial-differential, differential-delay and integro-differential 
equations  
For nonlinear models, the method has shown reliable results 
in supplying analytical approximation that converges very 
rapidly. 
The key of the method is to decompose the nonlinear term in 
the equations into a series of polynomials  

1

,n
n

A
∞

=
∑       
where   nA  are the so-called Adomian polynomials. 

The basic principles of the Adomian decomposition methods 
for solving differential equations by considering the general 
equation:  
Fu g=         (2.8) 
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where F represents a general nonlinear differential operator 
involving both linear and nonlinear terms, the linear term is 
decomposed in to L R+ , where L  is easily invertible and R  
is the remainder of the linear operator, Nu  represents the non-
linear terms. For convenience, L  may be taken as the highest 
order derivative If the highest derivative that appeared in 

eq.(2.8) is n, then n

n
dL
dt

=
. Thus eq.(2.8) may be written as: 

Lu Ru Nu g+ + =  
By solving Lu  from the above equation, one can have: 
Lu g Ru Nu= − −      (2.9) 
Since L  is an invertible operator, eq.(2.9) becomes  

1 1 1 1L Lu L g L Ru L Nu− − − −= − −     (2.10) 
For example, if L is a second-order operator, then 

1L−
 is a 

twofold integration operator, and 
1 ( ) ( ) (0) (0),L Lu t u t u tu− ′= − −  in this case eq.(2.10) for u  

yields: 
1 1 1( ) (0) (0)u t u u t L g L Ru L Nu− − −′= + + − −  

Therefore, u  can be presented as a series: 

0

,n
n

u u
∞

=

=∑       (2.11) 

where 1
0

0

(0) ,
!

n i
i

i

tu u L g
i

−

=

= +∑  and un,      n=1,2,… are 

to be determined. The nonlinear term Nu will be decomposed 
by the infinite series of Adomian polynomials, 

0

,n
n

Nu A
∞

=

=∑       (2.12) 

where 'nA s  are said to be Adomain polynomials and can be 

obtained by writing: 

0

( ) n
n

n

v uλ λ
∞

=

=∑       (2.13) 

and 

0

( ( )) n
n

n

N v Aλ λ
∞

=

=∑        (2.14) 

Here λ  is a parameter introduced for convenience. From 
eq.(2.13) and eq.(2.14), one can deduce that: 

0

1 ( ( )) ,
!

n

n n
dA N v

n d λ

λ
λ =

 
=  

 
n=0,.1,...                     (2.15) 

Now, by substituting eq.(2.11) and eq.(2.12) into eq.(2.10), one 
can obtain: 

1 1
0

0 0 0

.n n n
n n n

u u L R u L A
∞ ∞ ∞

− −

= = =

= − −∑ ∑ ∑  

Consequently, we can write: 

1
0

0

( ) (0) ,
!

n i
i

i

tu t u L g
i

−

=

= +∑  

1 1
1 0 0( )u t L Ru L A− −= − −  

        
1 1

1( )n n nu t L Ru L A− −
+ = − −  

From the above equations, all of nu  are calculable and hence 

we substitute these values into eq.(2.11). Since the series con-
verges and does so very rapidly, the n-term partial sum 

1

0

n

n i
i

uϕ
−

=

=∑ can serve as an approximated solution of above 

equations. 
To illustrate this method, we consider the following example. 

Example (2.1): 
 Consider the initial value problem that consists of the 
first order nonlinear ordinary differential equation: 

( ) ( ) ( )y t y t x t′ = − , 0t ≥                           (2.16.a) 

together with nonlinear algebraic equation: 
( ) ( ) 1sin ( ) ( ) sin(1) 0y t x te y t x t e− −− + − = , 0t ≥      (2.16.b) 

and with initial conditions  
(0) 1y =          (2.16.c) 

This example is constructed such that: 

( ) 1y t t= − , 1( )
1

x t
t

=
−

 
 To solve this example, we use Adomian decomposi-
tion method. To do this we must transform the above system 
of differential-algebraic equations to system of differential 
equations. To do this we must convert the algebraic equation 
given by eq.(2.16.c) into an equivalent differential equation. To 
do this, we differentiate eq.(2.16.b) with respect to x to get: 

( ) ( )[ ( ) ( ) ( ) ( )] cos[ ( ) ( )][ ( ) ( ) ( ) ( )]y t x te y t x t x t y t x t y t y t x t x t y t− ′ ′ ′ ′− + = +

 
By substituting eq.(2.16.a) into the above equation and after 
simple calculated one can get: 

2( ) ( )x t x t′ =      (2.16.d) 

After that, we set t=0 and y(0)=1 into eq.(2.16.b) to get: 
(0) 1sin[ (0)] sin(1) 0xe x e− −− + − =  

which has the solution 
(0) 1x =             (2.16.e) 

Therefore the initial value problem give by eq.(2.16) reduces to 
the initial value problem that consist of two of the first order 
nonlinear ordinary differential equations 

( ) ( ) ( )y t y t x t′ = −     (2.17.a) 
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2( ) ( )x t x t′ =      (2.17.b) 

together with the initial conditions: 
y(0)=1      (2.17.c) 
x(0)=1               (2.17.d) 
From eq.(2.17.b) one can notice that: 

R(x(t))=0, 2( ( )) ( )N x t x t= , g(x(t))=0 
to get x0(t), by using Adomian decomposition method 
 such that: 

1
0 ( ) (0) ( ( )),x t x L g x t−= +  

one can have: 

0 ( ) 1x t = . 
to fined x1(t), x2(t), …, xn(t) by using the 
 following equation. 

 
1 1

0
0 0 0

( ) ( ) ( ) .n n n
n n n

x t x t L R x t L A
∞ ∞ ∞

− −

= = =

= − −∑ ∑ ∑  

But R(x(t))=0, therefore  
1

1 0( ) .x t L A−=  
where A0 defined as previous in eq.(2.15) then 
A0=1  
respectively  

1
0

0

t

L A dx t− = =∫
 

thus 
x1(t)=t 
also  

1
2 1( ) .x t L A−= where 

1
0

1 ( ( ))
1!

dA N v
d λ

λ
λ =

 =  
 

such that 

0 1
0 1( ) ( ) ( )v x t x tλ λ λ= +  

therefore  

( )20 1
1 0 1

0

1 ( ) ( )
1!

dA x t x t
d λ

λ λ
λ =

 = + 
 

 

thus 

2
2 1

0

( ) 2 ( )
t

x t x t dx t= =∫
 

for simplicity we truncate in this term to get: 
2( ) 1x t t t= + +  

on the other hand by substituting x(t)in eq.(2.17.a) one can 
have: 

2( ) ( ) ( ) ( )y t y t ty t t y t′ = − − −  
respectively  

2( ( )) ( ) ( ) ( )R y t y t ty t t y t= − − − , ( ( )) 0N x t = , g(x(t))=0 
similar to the previous one can have: 

3 4 5 6( ) 1 0.1666 0.4583 0.1666 0.0555y t t t t t t= − − + + +  
the following table represent the comparison between the ex-
act solutions and the approximate solution by Adomain de-
composition  
 
Table (2.1) represents the exact and the approximated solu-

tions of example (2.3) 

 

Conclusion: 
In this paper, the standard Adomian decomposition method is 
used to solve some nonlinear differential-algebraic equations, 
this method gives analytical solution in series form which 
converges rapidly. The reliability and the reduction in the size 
of computational work is certainly a sign of a wider applicabil-
ity of the method. 
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xi xi(ti) yi yi(ti) ti i 

1.0525 1.0526 0.95 0.95 0.05 1 
1.11 1.1111 0.8999 0.9 0.1 2 

1.1725 1.1765 0.8497 0.85 0.15 3 
1.24 1.25 0.7995 0.8 0.2 4 

1.3325 1.3333 0.7494 0.75 0.25 5 
1.42 1.4286 0.7997 0.7 0.3 6 

1.5325 1.5385 0.6507 0.65 0.35 7 
1.6600 1.6667 0.603 0.6 0.4 8 
1.8125 1.8182 0.5571 0.55 0.45 9 
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